đề thi học kì 2 môn toán lớp 9 violet

Thí sinh ghi vào bài làm chỉ một chữ cái A, B, C hoặc D đứng trước câu trả lời đúng nhất.

Câu 1. Giá trị của biểu thức 1 ) 2 1 (

2

  là:

A. 2 2  B. 2 C. 2  D. 2 2 

Câu 2. Trong các phương trình bậc hai sau phương trình nào có tổng hai nghiệm bằng 5?

A. 0 5 10

2

   x x B. 0 10 5

2

   x x C. 0 1 5

2

   x x D. 0 1 5

2

   x x

Câu 3. Cho ) ; ( R O và dây 2 R AB  . Khi đó độ dài cung nhỏ AB là:

A.

2

R 

B.

2

2

R 

C. R  2 D. R 

Câu 4. Cho hình nón có bán kính bằng 3cm, chiều cao bằng 4cm diện tích xung quanh của hình nón đã cho

bằng:

A.  24 cm

2

B.  12 cm

2

C.  20 cm

2

D.  15 cm

2

II. PHẦN TỰ LUẬN (8,0 điểm)

Câu 5. (1,5 điểm)

a) Rút gọn biểu thức: 6 2 ) 3 2 8 ( 2    P .

b) Giải hệ phương trình:

2 3 1

47

xy

xy

 

  

Câu 6. (1,5 điểm) Cho hàm số 2 2    m mx y ) 1 ( (m là tham số).

a) Tìm giá trị của m để đồ thị hàm số ) 1 ( đi qua điểm ) 1 ; 1 (  A . Vẽ đồ thị hàm số trên với giá trị m

tìm được.

b) Tìm các giá trị của m để đồ thị hàm số ) 1 ( song song với đường thẳng 1 2 ) 3 (

2

    m x m y

Câu 7. (1,5 điểm) Cho phương trình bậc hai ẩn x : 0 2 1 2

2 2

      m m )x m ( x (1) (m là tham số).

a) Giải phương trình (1) khi 2   m .

b) Tìm m để phương trình (1) có 2 nghiệm

2 1

, x x thoả mãn: 9 ) 3 ( ) 2 (

1 2 2 2 1 1

    x x x x x x .

c) Lập hệ thức liên hệ giữa sao cho chúng không phụ thuộc vào m.

Câu 8. (2,5 điểm) Cho đường tròn ) ; ( R O . Từ một điểm M ở ngoài đường tròn, kẻ hai tiếp tuyến MB MA,

với đường tròn ( B A,

là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt đường tròn tại E (

A E  ), đường thẳng ME cắt đường tròn tại F ( E F  ), đường thẳng AF cắt MO

tại N , H là giao

điểm của MO và AB . Chứng minh rằng:

a) Tứ giác MAOB

nội tiếp được đường tròn.

b) NA NF MN .

Bạn đang xem: đề thi học kì 2 môn toán lớp 9 violet

2

 và AN HF  .

c) 1

2

2

 

MF

EF

HF

HB

.

Câu 9. (1,0 điểm) Cho các số b a, thỏa mãn:

 

 

1

2 3

1

1 3

3 2

2

3 2

2

a a

b

b b

a

Tính giá trị của biểu thức

2 2

b a M  

—————– HẾT —————-

Cán bộ coi thi không giải thích gì thêm!

Họ và tên học sinh:………………………………………… Số báo danh:…………………… Phòng thi:……….

12

; xxhttps://nguyenthienhuongvp77.violet.vn/

2

ĐỀ 2

ĐỀ KIỂM TRA HỌC KỲ II

Môn: Toán – Lớp 9

Thời gian làm bài: 120 phút

I. PHẦN TRẮC NGHIỆM (2,0 điểm).

Chọn câu trả lời đúng A, B, C hoặc D rồi ghi vào tờ giấy thi.

Câu 1. Gọi S, P là tổng và tích các nghiệm của phương trình x

2

+ 8x -7 =0. Khi đó S + P

bằng?

A. -1 B. -15 C. 1 D. 15

Câu 2. Phương trình nào sau đây có hai nghiệm phân biệt?

A.

2

30 x  . B.

2

3 4 0 xx    . C.

2

2 1 0 xx    . D.

2

3 7 2 0 xx    .

Câu 3. Cho hàm số

2

ax y  (a ≠ 0). Câu nào sau đây là đúng?

A. Hàm số đồng biến với a > 0 và x > 0; B. Hàm số nghịch biến với a 0 và x > 0 D. Hàm số đồng biến với a 0

Câu 4. Thể tích của hình trụ có bán kính đáy bằng 3cm, chiều cao bằng 5cm là

A.

3

30 ( ). cm  B.

3

45 ( ). cm  C.

Xem thêm: Bài Tập Về Axit Lớp 9 Violet Mới Nhất 2021, Bài Tập Axit

3

54 ( ). cm  D.

3

75 ( ). cm 

II. PHẦN TỰ LUẬN. (8,0 điểm)

Câu 5. (2,0 điểm)

a) Giải hệ phương trình:

3

25

xy

xy

 



b) Giải phương trình

2

2 5 1 0 xx   

Câu 6. (2,0 điểm) Một công ty vận tải điều một số xe tải đến kho hàng để chở 21 tấn hàng.

Khi đến kho hàng thì có 1 xe bị hỏng nên để chở hết lượng hàng đó, mỗi xe phải chở thêm

0,5 tấn so với dự định ban đầu. Hỏi lúc đầu công ty đã điều đến kho hàng bao nhiêu xe. Biết

rằng khối lượng hàng chở ở mỗi xe là như nhau.

Câu 7. (1,0 điểm) Cho phương trình

2

(2 1) 2 0, x m x m      ( x là ẩn, m là tham số)

Tìm tất cả các giá trị của m để phương trình đã cho có hai nghiệm và tổng lập phương của

hai nghiệm đó bằng 27.

Câu 8. (2,5 điểm) Cho đường tròn tâm O đường kính AB, trên cùng một nửa đường tròn

(O) lấy 2 điểm G và E (theo thứ tự A, G, E, B) sao cho tia EG cắt tia BA tại D. Đường thẳng

vuông góc với BD tại D cắt BE tại C, đường thẳng CA cắt đường tròn (O) tại điểm thứ hai

là F.

a) Chứng minh tứ giác DFBC nội tiếp.

b) Chứng minh: BF = BG

c) Chứng minh:

.

.

DA DG DE

BA BE BC

Câu 9. (0,5 điểm) Cho phương trình  

2

42

2 2 1 0 x x ax a      .Tìm a để nghiệm của phương

trình đó đạt giá trị nhỏ nhất

——————— Hết ———————

(Cán bộ coi thi không giải thích gì thêm)

https://nguyenthienhuongvp77.violet.vn/

3

B

40°

O

C

A

S

ĐỀ 3

ĐỀ KIỂM TRA HỌC KỲ II

Môn: Toán – Lớp 9

Thời gian làm bài: 120 phút

I. TRẮC NGHIỆM (3,0 điểm) Chọn phương á n trả lời đú ng trong các câu sau:

Câu 1. Điều kiện để biểu thức M

1

1 x

xác định là

A. 1. x B. 0. x C. 0; 1. xx D. 0; 1. xx

Câu 2. Giá trị của biểu thức 3 2 2 3 2 2 P là

A. 2 2. B. 2. C. 2. D. 2 2.

Câu 3. Cho tam giác ABC vuông tạiA , 60 ABC , cạnh 5 AB cm. Độ dài cạnh AC là

A. 10 cm. B.

53

2

cm. C. 53 cm. D.

5

3

cm.

Câu 4. Hình vuông cạnh bằng 2 cm, bán kính đường tròn ngoại tiếp hình vuông là

A. 1 cm. B. 2 cm.

C. 22 cm. D. 2 cm.

Câu 5. Trong hình vẽ bên, biết góc 40 ASC , SA là tiếp tuyến

của đường tròn tâm . O Góc ACS có số đo bằng

A.40 . B. 30 .

C.25 . D. 20 .

Câu 6. Số giá trị nguyên của m để hàm số

2

– 9 3 y m x nghịch biến là

A. 5. B. 4. C. 2. D. 3.

II. TỰ LUẬN (7,0 điểm)

Câu 7. (1,5 điểm) Cho biểu thức A

2 3 9

9

33

x x x

x

xx

, với 0; 9 xx .

a) Rút gọn biểu thức . A

b) Tìm giá trị của x để

1

.

3

A

Câu 8. (1,5 điểm) Cho phương trình

22

2 1 0 x mx m m , với x là ẩn; m là tham số.

a) Giải phương trình với 2. m

b) Tìm m để phương trình có hai nghiệm

12

; xx thỏa mãn

22

1 2 1 2

1. x x xx

Câu 9. (2,5 điểm) Cho tam giác ABC vuông tại A , đường cao . AH H BC Đường tròn đường kính

AH cắt hai cạnh , AB AC theo thứ tự tại M và . N

a) Chứng minh tứ giác AMHN là hình chữ nhật. b) Chứng minh tứ giác BMNC là tứ giác nội tiếp.

c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại I . Chứng minh rằng

2 2 2

14

.

AI AB AC

Câu 10. (1,5 điểm)

a) Sở Giáo dục và Đào tạo Bắc Ninh dự định tổ chức hội nghị tại hội trường 500 chỗ ngồi của trường

THPT Chuyên Bắc Ninh, hội trường được chia thành từng dãy ghế, mỗi dãy ghế có số chỗ ngồi như nhau.

Vì có 567 người dự hội nghị nên ban tổ chức phải kê thêm 1 dãy ghế, đồng thời phải kê thêm 2 chỗ

ngồi vào tất cả các dãy ghế thì vừa đủ số chỗ ngồi. Hỏi lúc đầu hội trường có bao nhiêu dãy ghế và mỗi

dãy ghế có bao nhiêu chỗ ngồi?

b) Cho , xy là các số thực dương thỏa mãn 2. xy Tìm giá trị lớn nhất của

33

. A xy x y

———- HẾT ———- https://nguyenthienhuongvp77.violet.vn/

4

TOÁN

CÓ SKKN CỦA TẤT CẢ CÁC MÔN CẤP 1-2

18 đề-8 đáp án Toán 6 Lương Thế Vinh=10k

20 đề đáp án Toán 6 AMSTERDAM=30k

22 đề-4 đáp án Toán 6 Marie Cuire Hà Nội=10k

28 DE ON VAO LOP 6 MÔN TOÁN=40k

13 đề đáp án vào 6 môn Toán=20k

20 đề đáp án KS đầu năm Toán 6,7,8,9=30k/1 khối; 100k/4 khối

15 ĐỀ ĐÁP ÁN KHẢO SÁT TOÁN 6,7,8,9 LẦN 1,2,3=30k/1 lần/1 khối; 100k/4 khối/1 lần

15 ĐỀ ĐÁP ÁN THI THỬ TOÁN 9 LẦN 1,2,3=30k/1 lần

20 ĐỀ ĐÁP ÁN KIỂM TRA HỌC KỲ I (II) TOÁN 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ

20 ĐỀ ĐÁP ÁN KIỂM TRA GIỮA HỌC KỲ I (II) TOÁN 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ

63 ĐỀ ĐÁP ÁN TOÁN VÀO 10 CÁC TỈNH 2017-2018; 2018-2019; 2019-2020=60k/1 bộ; 150k/3 bộ

33 ĐỀ ĐÁP ÁN CHUYÊN TOÁN VÀO 10 CÁC TỈNH 2019-2020=40k

GIÁO ÁN DẠY THÊM TOÁN 6,7,8,9 (40 buổi)=80k/1 khối; 300k/4 khối

Ôn hè Toán 5 lên 6=20k; Ôn hè Toán 6 lên 7=20k; Ôn hè Toán 7 lên 8=20k; Ôn hè Toán 8 lên 9=50k

Chuyên đề học sinh giỏi Toán 6,7,8,9=100k/1 khối; 350k/4 khối

(Các chuyên đề được tách từ các đề thi HSG cấp huyện trở lên)

25 ĐỀ ĐÁP ÁN KHẢO SÁT GIÁO VIÊN MÔN TOÁN=50k

TẶNG:

5 đề đáp án Toán 6 Giảng Võ Hà Nội 2008-2012

300-đề-đáp án HSG-Toán-6; 225-đề-đáp án HSG-Toán-7

200-đề-đáp án HSG-Toán-8

100 đề đáp án HSG Toán 9

77 ĐỀ ĐÁP ÁN VÀO 10 CHUYÊN TOÁN 2019-2020

ĐÁP ÁN 50 BÀI TOÁN HÌNH HỌC 9

Cách thanh toán: Thanh toán qua tài khoản ngân hàng. Nội dung chuyển khoản: tailieu +

Số T/K VietinBank: 101867967584; Chủ T/K: Nguyễn Thiên Hương

ANH

CÓ SKKN CỦA TẤT CẢ CÁC MÔN CẤP 1-2

35 ĐỀ ĐÁP ÁN ANH VÀO 6 (2019-2020)=50k

20 đề đáp án KS đầu năm Anh 6,7,8,9=30k/1 khối; 100k/4 khối

15 ĐỀ ĐÁP ÁN KHẢO SÁT ANH 6,7,8,9 LẦN 1,2,3=30k/1 lần/1 khối; 100k/4 khối/1 lần

15 ĐỀ ĐÁP ÁN THI THỬ ANH 9 LẦN 1,2,3=30k/1 lần

20 ĐỀ ĐÁP ÁN KIỂM TRA HỌC KỲ I (II) ANH 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ

20 ĐỀ ĐÁP ÁN KIỂM TRA GIỮA HỌC KỲ I (II) ANH 6,7,8,9=30k/1 khối/1 kỳ; 100k/4 khối/1 kỳ

100 đề đáp án HSG môn Anh 6,7,8,9=60k/1 khối

30 ĐỀ ĐÁP ÁN ANH VÀO 10 CÁC TỈNH 2019-2020=40k

9 ĐỀ ĐÁP ÁN CHUYÊN ANH VÀO 10 CÁC TỈNH 2019-2020=20k

33 ĐỀ 11 ĐÁP ÁN GIÁO VIÊN GIỎI MÔN ANH=50k

TẶNG:

10 đề Tiếng Anh vào 6 Trần Đại Nghĩa; CẤU TRÚC … TIẾNG ANH

Tài liệu ôn vào 10 môn Anh (Đủ dạng bài tập)

Cách thanh toán: Thanh toán qua tài khoản ngân hàng. Nội dung chuyển khoản: tailieu +

Số T/K VietinBank: 101867967584; Chủ T/K: Nguyễn Thiên Hương

HÓA

CÓ SKKN CỦA TẤT CẢ CÁC MÔN CẤP 1-2

20 CHUYÊN ĐỀ BỒI DƯỠNG HSG HÓA 9=60k

2019-2020 VÀO 10 CHUYÊN HÓA CÁC TỈNH=20k

CHUYÊN ĐỀ BỒI DƯỠNG HSG HÓA 8=40k

CÁC CHUYÊN ĐỀ HÓA THCS=100k

600 CÂU HỎI TRẮC NGHIỆM VẬT LÍ 9 CÓ ĐÁP ÁN=70k https://nguyenthienhuongvp77.violet.vn/

5

ĐỀ 4

ĐỀ KIỂM TRA HỌC KỲ II

Môn: Toán – Lớp 9

Thời gian làm bài: 120 phút

Phần I – Trắc nghiệm khách quan (2,0 điểm)

Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước phương án đó vào bài làm.

Câu 1. Điều kiện để biểu thức

2019

1 x 

có nghĩa là

A. 1. x  B. 1. x  C. 1. x  D. 1. x 

Câu 2. Trong mặt phẳng toạ độ Oxy , đường thẳng  11 y a x    (d) đi qua điểm   1;3 A . Hệ số góc

của (d) là

A. 2. B. 3. C. 4. D. 5.

Câu 3. Với giá trị nào của m thì hệ phương trình

 

30

12

y

y m x

  

  

vô nghiệm?

A. 1. m  B. 1. m   C. 2. m  D. 2. m  

Câu 4. Phương trình nào sau đây có tích hai nghiệm bằng 2?

A.

2

2 0. xx    B.

2

2 0. xx    C.

2

2 1 0. xx    D.

2

5 2 0. xx   

Câu 5. Trong mặt phẳng toạ độ Oxy , số giao điểm của parabol

2

yx  và đường thẳng 3 yx   là

A. 0. B. 1. C. 2. D. 3.

Câu 6. Giá trị của m để hàm số    

2

11 y m x m    luôn đồng biến với mọi giá trị của 0 x  là

A. 1. m  B. 1. m  C. 1. m   D. 1. m  

Câu 7. Cho hai đường tròn   ;3 O cm và   “;5 O cm , có “7 OO cm  . Số điểm chung của hai đường tròn là

A. 1. B.2. C. 3. D.0.

Câu 8. Trên đường tròn   ; OR lấy hai điểm , AB sao cho số đo cung AB lớn bằng

0

270 . Độ dài dây

cung AB là

A. . R B. 2. R C. 3. R D. 2 2. R

Phần 2 – Tự luận (8,0 điểm)

Câu 1 (1,5 điểm).

Cho biểu thức

21

:

4 22

x

A

x xx

 

 

 

 

 

với 0; 4. xx 

a) Rút gọn biểu thức A.

b) Chứng tỏ rằng 2. A 

Câu 2 (1,5 điểm).

Cho phương trình

2

10 x mx m     (m là tham số).

a) Giải phương trình với 3. m 

b) Tìm tất cả các giá trị của m để phương trình có hai nghiệm

12

, xx thỏa mãn

12

2 3. xx  

Câu 3 (1,0 điểm).

Giải hệ phương trình

2 3 5

51

4.

x y xy

xy

  



Câu 4 (3,0 điểm).

Cho tam giác ABC vuông tại A   AB AC  có đường cao AH và I là trung điểm của BC. Đường

tròn tâm O đường kính AH cắt AB, AC lần lượt tại M và N (M và N khác A).

b) Chứng minh tứ giác BMNC là tứ giác nội tiếp. https://nguyenthienhuongvp77.violet.vn/

6

c) Gọi D là giao điểm của AI và MN. Chứng minh

1 1 1

.

Xem thêm: Đề Thi Thử Đại Học Môn Toán Violet, Đề Thi Học Kì 1 Lớp 8 Môn Toán Violet

AD HB HC



Câu 5 (1,0 điểm).

a) Giải phương trình 2019 2 2 1. x x x    

b) Cho các số thực , xy thỏa mãn

5

.

4

x y xy    Tìm giá trị nhỏ nhất của biểu thức

22

. A x y  

———-HẾT———–

Họ và tên học sinh:………………………………………………………..Số báo danh:……………………………………….

Họ, tên, chữ kí của GV coi khảo sát:…………………………………………………………………………………………..

TÀI LIỆU ÔN THI VÀO 10

TOÁN

15 ĐỀ ĐÁP ÁN KHẢO SÁT TOÁN 9 LẦN 1,2,3=30k/1 lần

15 ĐỀ ĐÁP ÁN THI THỬ TOÁN 9 LẦN 1,2,3=30k/1 lần

63 ĐỀ ĐÁP ÁN TOÁN VÀO 10 CÁC TỈNH 2017-2018; 2018-2019; 2019-2020=60k/1 bộ; 150k/3 bộ

33 ĐỀ ĐÁP ÁN CHUYÊN TOÁN VÀO 10 CÁC TỈNH 2019-2020=40k

VĂN

15 ĐỀ ĐÁP ÁN KHẢO SÁT VĂN 9 LẦN 1,2,3=30k/1 lần

15 ĐỀ ĐÁP ÁN THI THỬ VĂN 9 LẦN 1,2,3=30k/1 lần

20 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2017-2018=20k

38 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2018-2019=40k

59 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2019-2020=60k

58 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2017-2019=50k

117 ĐỀ ĐÁP ÁN VĂN VÀO 10 CÁC TỈNH 2017-2020=100k

32 ĐỀ-20 ĐÁP ÁN CHUYÊN VĂN VÀO 10 CÁC TỈNH 2019-2020=30k

ANH

15 ĐỀ ĐÁP ÁN KHẢO SÁT ANH 9 LẦN 1,2,3=30k/1 lần

15 ĐỀ ĐÁP ÁN THI THỬ ANH 9 LẦN 1,2,3=30k/1 lần

30 ĐỀ ĐÁP ÁN ANH VÀO 10 CÁC TỈNH 2019-2020=40k

9 ĐỀ ĐÁP ÁN CHUYÊN ANH VÀO 10 CÁC TỈNH 2019-2020=20k

Khảo sát lần 1 (tháng 11), khảo sát lần 2 (tháng 1), khảo sát lần 3 (tháng 3), khảo sát lần 4 (tháng 5)

Thi thử lần 1 (tháng 1), thi thử lần 2 (tháng 3), thi thử lần 3 (tháng 5)

HÓA, LÍ

600 CÂU HỎI TRẮC NGHIỆM VẬT LÍ 9 CÓ ĐÁP ÁN=70k

2019-2020 VÀO 10 CHUYÊN HÓA CÁC TỈNH=20k

CÁC CHUYÊN ĐỀ HÓA THCS=100k

https://nguyenthienhuongvp77.violet.vn/

7

ĐỀ 5

ĐỀ KIỂM TRA HỌC KỲ II

Môn: Toán – Lớp 9

Thời gian làm bài: 120 phút

I. TNKQ (2 điểm) Ghi vào bài làm chữ cái đứng trước câu trả lời đúng nhất.

Câu 1. Kết quả của biểu thức:

22

( 7 5) (2 7) M     là:

A. 7 B.27 C. 3 D. 10

Câu 2. Cho hàm số ( 2) 1 y m x mx     (x là biến, m là tham số) đồng biến, khi đó giá trị của m là:

A. m = 2 B. m 1

Câu 3. Cặp số (1; –2) là nghiệm của phương trình nào sau đây?

A. 0x – 3y = 9 B. 3x – 2y = 7 C. 3x – y = 0 D. 0x + 4y = 4.

Câu 4. Cho  ABC vuông tại A, có AB = 18 cm, AC = 24 cm. Bán kính đường tròn ngoại tiếp  đó bằng:

A. 30 cm B. 15 cm C. 20 cm D. 15 2 cm

Câu 5. Cho MNP vuông tại M, MP = 3cm, MN = 4cm. Quay tam giác đó một vòng quanh cạnh MN được

Chuyên mục: Đề Thi

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *